Bacteriophage Tail‐Tube Assembly Studied by Proton‐Detected 4D Solid‐State NMR
نویسندگان
چکیده
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.
منابع مشابه
Supporting information for Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data
متن کامل
Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data.
We introduce an efficient approach for sequential protein backbone assignment based on two complementary proton-detected 4D solid-state NMR experiments that correlate Hi(N)/Ni with CAi/COi or CAi-1/COi-1. The resulting 4D spectra exhibit excellent sensitivity and resolution and are amenable to (semi-)automatic assignment approaches. This strategy allows to obtain sequential connections with hig...
متن کاملRapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences.
The solid-state NMR spectra of many NMR active elements are often extremely broad due to the presence of chemical shift anisotropy (CSA) and/or the quadrupolar interaction (for nuclei with spin I > 1/2). These NMR interactions often give rise to wideline solid-state NMR spectra which can span hundreds of kHz or several MHz. Here we demonstrate that by using fast MAS, proton detection and dipola...
متن کاملP15 and P3, the tail completion proteins of bacteriophage T4, both form hexameric rings.
Two proteins, gp15 and gp3 (gp for gene product), are required to complete the assembly of the T4 tail. gp15 forms the connector which enables the tail to bind to the head, whereas gp3 is involved in terminating the elongation of the tail tube. In this work, genes 15 and 3 were cloned and overexpressed, and the purified gene products were studied by analytical ultracentrifugation, electron micr...
متن کاملStructure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
The atomic resolution structure of Pf1 coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles in solution is compared to the structures previously determined by X-ray fiber and neutron diffraction, the structure of its membrane-bound form, and the structure of fd coat protein. These structural comparisons provide insights into several...
متن کامل